

You Can’t Touch This! -
Logical Architectures in MBSE and the UAF

Matthew Hause

Systems Solutions Inc (SSI)

3208 Misty Oaks Way, Round Rock, Texas,

USA

+1 917 514 7581

mhause@systemxi.com

Lars-Olof Kihlström

Syntell AB

PO Box 10022, SE-10055 Stockholm,

Sweden

+46 706661978

lars-olof.kihlstrom@syntell.se

Copyright © 2022 by Matthew Hause, Lars-Olof Kihlström. Permission granted to INCOSE to publish and use.

Abstract. Logical or abstract architectures are an essential concept in systems engineering. They

are included in the systems engineering handbook, the OOSEM process, the SEBOK, several

modeling languages, and the ISO 15288 process definition. A logical architecture is a solu-

tion-independent model of the problem domain used to understand “what” needs to be done, while

avoiding defining “how” it will be done. The logical architecture includes all the related logical

elements without constraining the architecture to a particular technology or environment. It traces

to the physical architecture which defines how to implement the architecture using specific

technologies. Logical architectures can be defined using MBSE languages such as the systems

modeling language (SysML). They are implicit in the Operational set of views in architecture

frameworks such as DoDAF, MODAF, NAF and their implementation in UAF using SysML.

NAF has recently changed the title of the Operational views to Logical views to further emphasize

the purpose of the views. This paper will define the benefits of using a logical architecture and

provide guidance on how it can be implemented.

Introduction

The logical architecture is a model that is used to provide a detailed description of the system

without defining the system technology or environment. The title of the paper refers to the fact that

the logical architecture does not contain solution specific elements, i.e., it is comprised of

non-physical things or things that cannot be touched. The rule of thumb often quoted is “if you can

hit it with a hammer, it should not be in the logical model.” While a good rule of thumb, there are

exceptions in terms of what the Unified Architecture Framework (UAF) refers to as “known re-

sources”, which will be covered later in the paper. Essentially, selection of the contents of a logical

architecture is a balancing act that needs careful consideration, especially when an object-oriented

approach to the model is applied.

What is Meant by a Logical Architecture?

The INCOSE Systems Engineering Handbook (INCOSE, 2015) states “Logical models, also re-

ferred to as conceptual models represent logical relationships about the system such as whole-part

mailto:mhause@systemxi.com
mailto:lars-olof.kihlstrom@syntell.se

relationship, an interconnection relationship between parts, or a precedence relationship between

activities to name a few.” It further discusses the development of different architecture viewpoints

and to “Select, adapt or develop models of the candidate architectures of the system such as logical

and physical models. It is sometimes not necessary nor sufficient to use logical and physical

models.” For example, the UAF also provides Strategic/Capability Views and Services Views that

both provide a solution independent expression of stakeholder requirements and solution inde-

pendent services specifications. “The models to be used are those that best address key stakeholder

concerns. Logical models may include the functional, behavioral, or temporal models.” (INCOSE,

2015)

The Systems Engineering Body of Knowledge (SEBOK) states that “the logical architecture de-

fines system boundary and functions, from which more detailed system requirements can be de-

rived. The starting point for this process may be to identify functional requirements from the

stakeholder requirements and to use this to start the architectural definition, or to begin with a

high-level functional architecture view and use this as the basis for structuring system require-

ments. The exact approach taken will often depend on whether the system is an evolution of an

already understood product or service, or a new and unprecedented solution. However, when the

process is initiated, it is important that the stakeholder requirements, system requirements, and

logical architecture are all complete, consistent with each other, and assessed together at the ap-

propriate points in the systems life cycle model.” (INCOSE, 2021) The different elements defined

in this architecture help to approach the problem from many different perspectives and defining

them, assembling these together, and adding traceability between them identifies inconsistencies

and spurs innovation.

Chapter 16 of Friedenthal et al (2008) describes the definition of the logical architecture using the

Object-Oriented Systems Engineering Methodology (OOSEM) as follows: “This activity is part of

the system architecture design that includes decomposing the system into logical components that

interact to satisfy system requirements. The logical components are abstractions of components

that implement the system, which perform the system functionality without imposing implemen-

tation constraints. An example of a logical component is a user interface that may be realized by a

web browser or display console or an entry/exit sensor that may be realized by an optical sensor.

The logical architecture serves as an intermediate level of abstraction between the system re-

quirements and the physical architecture that can reduce the impact of both requirements and

technology changes on the physical design.” (Friedenthal, 2008)

Logical Architecture Development

So how are these logical components defined and developed? This understandably follows normal

systems engineering best practice in that it is driven by functional requirements or behavior. What

functionality does the system need to provide to its stakeholders? “OOSEM provides guidelines

for decomposing the system into its logical elements. Functions for logical elements are derived

from logical scenarios to support black system functions. Logical element functionality and data

may be repartitioned based on other criteria such as cohesion, coupling, design for change, relia-

bility and performance.” (INCOSE, 2015) So, having defined the required stakeholder needs, use

cases, user stories or scenarios, the functions, activities, or behavior identified in these scenarios is

used to define logical components.

Schindel (2021) in training presentations describing the S*Models and Patterns and the Agile

Systems Engineering Lifecycle Management (ASELCM) defines logical architectures describing

interactions. “A Functional Role (or simply Role) is the behavioral part played by a system

component in an Interaction. It is the input-output behavior seen by the other roles in the interac-

tion. Every Interaction must have two or more Roles—else it would not be an Interaction! A

functional role is described entirely in behavioral terms. These are also called “logical systems”.

One of the uses of containment hierarchy for roles / logical systems is that we can build up “larger”

logical systems (behaviors) that contain (interconnected, interacting) “smaller” logical systems

behaviors). At any given level of such a hierarchy (for example, the whole vehicle level), we can

view the interacting smaller logical systems one level down, understanding the “logical architec-

ture” described by the relationships summarizing their interactions.” (Schindel, 2021)

Allocation of Logical to Physical

The defined logical model can and must be allocated to the physical architecture to define a

workable solution. “Defining a physical structural model of the architecture of a system consists of

identifying system elements capable of performing the functions of logical models, identifying the

physical interfaces capable to carry input/output flows and control flows, and taking into account

architectural characteristics that characterize the system in which they are included.” (INCOSE,

2015) This makes the abstract concrete and defines “How” the system will work.

Benefits of Logical Architectures

Logical architectures provide the following benefits:

• To ensure that the system design meets the stakeholder requirements

• Providing a bridge from requirements to the solution

• Preventing “solutioneering” rather than engineering

• Capturing the main concepts of the architecture prior to defining a solution

• Reflect the true location of the system of interest (SOI) in relation to stakeholders and other

systems

• Define an objective set of concepts and measures for trade-off analysis of solutions

• Providing business objects for service definition

• Bridging the gap between capabilities and implementation

• Facilitating impact analysis and traceability

• Minimizing the effect of changes in the architecture.

• Spurs innovation by forcing a rethink of the problem

Logical architectures also have a significant role to play when dealing with system of systems and

an example of this will be given later in this paper. The paper will look at the importance of the

logical architecture, traceability to the other views and the trade-offs involved in creating the

logical architecture. They are not sufficient without the physical model of course. Otherwise,

systems would never actually be built!

Logical Architecture in Modeling languages

The Systems Modeling Language (SysML) is the most widely used standardized systems mod-

eling language and notation. It is used to model systems in both the abstract and concrete (logical

and physical) views that include behavioral, structural, parametric and requirements views.

(OMG, 2017). SysML includes an allocation relationship to represent the allocation of functions to

elements, allocation of logical to physical elements and other types of allocation. SysML has no

predefined set of views to differentiate a logical vs. a physical architecture, levels of abstraction or

even levels of detail. In practice this is done using different package structures, custom stereo-

types, custom graphics, or a combination of all of these. The Harmony Process by IBM (Douglass,

2014) describes a means of defining a logical architecture as well as allocation to a physical ar-

chitecture. Architecture frameworks employ a means to define standardized views that separate

the logical from the physical, as will be illustrated in the next section describing UAF.

The Unified Architecture Framework (UAF)

For enterprise modeling, an architecture framework is required to understand systems of systems

and how they change over time. DoDAF is the Department of Defense Architecture Framework

(DoD, 2012) and MODAF is the Ministry of Defence Architecture Framework (MOD, 2020).

NATO created NAF version 3 (NATO Architecture Framework) based on MODAF and has re-

cently adopted NAF version 4 (NATO, 2018). NAF version 4 has been adopted by many European

countries including the UK. The Unified Architecture Framework (UAF) is built on top of SysML

and is used to define the overall goals, strategies, capabilities, interactions, standards, operational

and systems architecture, systems patterns and so forth (UAF, 2019). Figure 1 shows the UAF

Grid where rows are viewpoints, and columns are different forms of representations or different

modeling aspects (state diagrams, activity diagrams, block diagrams, etc.).

Figure 1. The Two-Dimensional Grid of View Specifications in UAF

Security and human factors (personnel) views were added to the UAF to improve the coverage of

these areas of concern. DoDAF/MODAF Systems views were renamed the Resources views as

they use systems, software, personnel, natural resources, etc. The UAF fully implements DoDAF,

MODAF, and NAF and is in fact a superset of these frameworks. The UAF was previously called

the Unified Profile for DoDAF and MODAF (UPDM) and was ratified by the Object Management

Group (OMG). Several papers have been written on the UAF and its support of SoS modeling

including (Hause, Dandashi 2015) and (Hause 2014). The full details of SysML and UAF are not

included here for space reasons. Please see the above references for more information. The UAF

provides the following viewpoints and concepts:

• Strategic Capability and Enterprise Concepts: defines the “why” and “what” and “when”

before the “how”

• Operational Logical Architecture: Defines the enterprise architecture in a solution inde-

pendent form.

• Services Concepts: solution independent definition of enterprise services (producing and

consuming) and traceability to capabilities, operations and implementing resources

• Human Factors: How people and systems interact, and their expected knowledge & skills

• Security: Identifying risk, its mitigation, and integrating security into the architecture

• Standards: definition of and compliance with standards in the architecture

• Project Deliveries: phased milestone approach to capability deployment

• System Configuration Over Time: deployment and changes in roadmaps and timelines

• Tie-in to Non-System Elements in the Architecture: Easy way to link the entire Architec-

ture to Requirements

• Built-in Traceability Between Multiple Views: Between Layers and Across Layers (OMG,

2022)

The UAF Operational Views

The operational architecture is a “logical” architecture in the sense that physical implementation

decisions are deferred to downstream architecture decisions and tradeoffs (a solution-independent

architecture). Logical in this sense means connecting ideas in a sensible way, based on the rules of

logic or formal argument. In other words, the logical architecture is what reasonably “follows”

from the drivers, challenges, opportunities, desired effects, and capabilities defined in the UAF

strategic or capability views. (Martin 2020) These also include associated measures, visions,

goals, and their strategic context. These are used to define associated concepts of operation using

logical (unimplemented) operational agents, that perform activities that compose an operational

architecture element which provides those capabilities. The main elements in the operational

views are the following:

• Operational Architecture – a type used to denote a model of the Architecture, described

from the Operational perspective (Note: this represents a large composition or aggre-

gation of operational performers, that is described from the operational perspective).

• Operational Performer – a logical entity that Is Capable to Perform Operational Activities

which produce, consume and process Resources.

• Operational Activity – an activity that captures a logical process, specified independently

of how the process is carried out (Note: an activity may contain a view of a logical

process flow) (OMG, 2022)

An Operational Architecture defines operational behavior elements (e.g., processes, states, se-

quences) and allocates these to operational structure elements (e.g., operational architectures,

performers, known resources to be used in the operational setting, roles, connectors, exchange

items, exchanges, ports, and interfaces). The behavior elements define operational expectations for

the operational activities that map to capabilities that will in turn help achieve enterprise goals.

All the elements in the operational architecture are solution-independent except for “known re-

sources”, which require some explanation. They are essentially to be considered as boundary

conditions, i.e., systems that the system under consideration interacts with but where the system of

interest needs to be adapted to accommodate it since each of the known resource’s behavior is

already defined. (See elements shown in Figure 10.) Consequently, it is essential that any known

systems that must be part of the eventual architecture are identified early on to ensure that the

system will meet the stakeholder requirements. Making the system too abstract or “too logical”

and ignoring these systems can result in an artificially unconstrained system, that is not practical or

will not interface to the required environment. Instead, by integrating these systems into the logical

architecture, issues can be identified early and resolved. If the constraints imposed by a known

system prevent the logical architecture from satisfying stakeholder needs and requirements, then

changes to that known system will also be required.

Example Automotive Factory Model

Problem Statement: Powerhouse Engines (PE Inc.) is an automotive supply company providing

internal combustion engines. PE Inc. finds that it has gradually become less competitive over the

years largely due to their outdated technology and largely manual processes. Foreign and domestic

competitors have started to cut into their business and the stakeholders are concerned that the

company's loss of market share will accelerate and that they will eventually become insolvent. To

combat this, the shareholders have proposed an investigation into strategies and technologies such

as Augmented reality, Robotic assembly systems, 5G, AI, Additive manufacturing, outsourcing of

select manufacturing and IT systems, Battery technology, Data analytics, Hybrid/electric engines,

etc. These technologies will be rolled out over a 3-phase technology deployment plan.

Capturing the Main Concepts of the Architecture

The High-Level Manufacturing Concept diagram is shown in Figure 2. The purpose of the diagram

is to describe the main enterprise concepts in a manner that is easy to understand to ensure a

common understanding. The main elements identified in the problem statement are illustrated

below. To a large extent they are defined in a manner that is solution independent. For example,

the part supplier shown in the upper left-hand corner could be an outsourced external company, an

internal casting department, or a 3D printer located in house. All of these are valid part suppliers,

and each will have its advantages and disadvantages regarding supply chain delays, cost, flexi-

bility, etc. In fact, all will be deployed over the 3 phases of technology introduction. Other ele-

ments shown in the context are the product itself, the workers, assembly line, parts, transportation,

etc.

Figure 2. High Level Manufacturing Concept for Powerhouse Engines

Having defined the main enterprise concepts, a set of capabilities for the enterprise has been de-

veloped as shown in Figure 3. Capabilities are also logical entities which define what is desired

without defining how. A capability is the ability to achieve a desired effect realized through a

combination of ways and means (e.g., systems and other elements in the resources view) along

with specified measures.

Figure 3. Powerhouse Engines Enterprise Capabilities

The main capability for the as-is enterprise shown in Figure 3 is to manufacture products. The

different phases will deploy additional capabilities. The part supply capability (described above as

part supplier) will be implemented by a variety of different resources. Other capabilities such as

assembly, design, logistics, etc. are also shown. The Assembly capability can be implemented by a

combination of people, tools, robots, automation, robots, etc. These capabilities will be valid

throughout the different temporal phases of the enterprise. These capabilities are then further ex-

plored by mapping operational activities as shown in Figure 4.

Figure 4. Capability Mapping to Operational Activities

Once again, the elements in the operational view are shown as solution independent. For example,

produce part could be provided by any of the three suppliers listed previously. The products are

procured based on a design and then are produced for assembly. Ensure system security can be

implemented via a combination of people, systems, cameras, sensors, AI, security gates and

fencing, etc. Much of it can also be outsourced to an external supplier by defining appropriate

services. These operational activities are then grouped in a logical order to show the manufacture

process as shown in Figure 5.

Figure 5. Manufacture Process Operational Activity Diagram

Defining the activities and the order in which they occur, as well as the inputs and outputs helps

define the main behaviors in the system, data exchanges as well as physical interactions and in-

terfaces. Error conditions as well as alternate routes can also be defined, as well as performance

measurements and constraints. The operational activities can be grouped together by purpose to

help define the operational performers for the logical architecture. An example of this is shown in

Figure 6.

Preventing “Solutioneering” Rather than Engineering

“Solutioneering” means attempting to solve a problem or deal with a difficult situation without

understanding it or starting out with a solution and building the system around it. The logical ar-

chitecture helps prevent this. The operational performers are created based on the logical, causal,

temporal, physical and other groupings of the defined activities. The operational activities define

what needs to be done and the operational performers execute those activities. The interactions

shown on the diagram are linked to the interactions on the activity diagram. This ensures that the

proposed functional interactions can be implemented using the structural components. Having

done this, the activity diagram can be updated with swimlanes corresponding to the structural

elements. This performs an explicit allocation of the activities to the operational performers.

Figure 6. Manufacturing Operational Structure

Also note that the exchanges are non-specific. For example, a product is assembled using parts

rather than a specific type of engine made of specific parts. This provides maximum flexibility in

the development of the solution architecture. For example, the current organization manufactures

internal combustion engines mostly using manual processes. Future plans are to manufacture

electric engines using modern means of production such as robotic systems, AI, and parts created

using 3D printing. This operational architecture will support both solution architectures as well as

many others providing maximum flexibility. Figure 7 shows the mapping between the operational

performers and the implementing systems for the as-is architecture. This traceability allocates

responsibility for the logical onto the physical systems implying that the defined logical interac-

tions and behavior will be implemented by the physical elements.

Figure 7: Mapping Between Operational Performers and Systems

Part Supplier is mapped to the diecast system, casting, and finishing station. In future phases this is

mapped to an outsourced service, and internally provided 3D printers. Other mappings are to

people, systems, software, etc. The interactions, functions, data, etc., can also be mapped as well

and traceability tables generated. The purpose of the As-Is operational and resource architecture

and mapping is to define the logical architecture that will define the structural and functional

elements that will be implemented in future phases. By abstracting the physical to the logical, the

true purpose of the existing systems can be specified from which new and innovative solutions and

architectures can be defined.

Providing business objects for service definition

The relationship between architecture data elements across the Operational Viewpoint to the

Service Viewpoint and Capability Viewpoint can be exemplified as services are procured and

fielded to support organizations and their operations or a capability. (MODAF, 2020) Services in

UAF are intended to allow the operational layer to be developed without impacting on the resource

layer provided that the operational layer only makes use of the functionality provided by the ser-

vice interfaces. In the same sense the resource layer can also develop on its own without impacting

on the operational layer provided that the service interfaces are untouched. (Hause, Kihlström,

2021) NAF version 4 places services directly underneath the strategic layer and assumes that

services are created directly from strategic decisions. (NATO, 2020). Figure 8 shows the mapping

between the Part Supply capability, the produce part operational activity and the casting service.

The Casting service specification exhibits the part supply capability, in that it will realize its re-

quired elements. The operational activity Produce Part “consumes” this service. Consumes will be

renamed to implements in UAF version 1.2 and the direction of the relationship reversed. In ad-

dition, the implementing systems of the services can also be shown with multiple system imple-

mentation possibilities. Performance attributes in terms of KPIs and others are defined for poten-

tial service providers. For more on the services views see (Hause, Kihlström, 2021)

Figure 8. Service Mapping Between Capabilities and Operational Elements

Providing a Bridge from Requirements to the Solution

The aim of the approach is to progress from system requirements (representing the problem from a

supplier/designer point of view, as independent of technology as possible) through an intermediate

model of logical architecture to allocate the elements of the logical architecture model to system

elements of candidate physical architecture models. System requirements and logical architecture

models share many characteristics, as they are both organized on functional lines, independently of

the implementation. Some authors (Stevens et al. 1998) go so far as to conflate the two, which

simplifies the handling of multiple simultaneous views.

Design decisions and technological solutions are selected according to performance criteria and

non-functional requirements, such as operational conditions and life cycle constraints (e.g., en-

vironmental conditions, maintenance constraints, realization constraints, etc.). Creating interme-

diate models, such as logical architecture models, facilitates the validation of functional, behav-

ioral, and temporal properties of the system against the system requirements that have no major

technological influence impacts during the life of the system, the physical interfaces, or the

technological layer without completely questioning the logical functioning of the system.

(INCOSE, 2021)

Bridging the Gap Between Capabilities and Implementation

Figure 9 shows the mapping between the defined capabilities, operational activities that map to

them, and the resource functions performed by the systems, software, personnel, etc. that imple-

ment the operational activities. This behavioral mapping shows the traceability from the capabil-

ities down to the implementing functions. A similar structural mapping can also be created that

traces from the capabilities to the operational performers to the implementing resources. At face

value, these traceability charts demonstrate that the required capabilities have all been imple-

mented. It also shows the “what” and “how” of this mapping across the different layers.

Figure 9: Enterprise Behavioral Mapping

Logical Architectures Help Spur Innovation

Systems engineering involves translating customer needs into viable systems that meet those

needs. All systems over time become dated, competitors introduce faster, better, and cheaper

products that can reduce demand, technologies will evolve, and systems environments can change.

Therefore, it is necessary for companies to occasionally rethink their products, systems and solu-

tions to reimagine new systems. The iPhone is one example where several devices in our pockets

were combined to provide a completely new product. In the 1950s and 1960s containerized ship-

ping was developed by first conceiving and manufacturing reusable, standardized, containers and

then special ships for carrying them. These two innovations have greatly increased shipping ca-

pacity and reduced costs substantially.

Finally, the Tesla electric car changed the configuration of the engine. In automobiles, the purpose

of the engine is to provide torque to drive the wheels. Rather than creating a single engine and

drive shaft, Tesla vehicles have individual engines for each wheel. This improves handling, re-

duces cost, reduces vehicle weight, and removes links in the chain from power source to the target

device. This is only possible by looking at the functionality and purpose of a system and its ele-

ments in a solution independent way and imagining the number of ways in which they could be

realized. This can lead to large leaps of innovation rather than merely incremental improvements.

Physical Elements in the Logical Architecture

That said, it needs to be remembered that a logical architecture that avoids solutioneering will need

to deal with boundary conditions as well as the context within which the logical architecture of

interest finds itself. These boundary conditions are dealt with explicitly in the architecture

frameworks such as UAF and show up there as Known Resource elements in the model. This

means that logically they will need to be handled by the elements that are purely logical and will

act as restrictions on the logical behavior allowed. Known resources may be things that have been

designed by someone else or purely natural elements.

A logical transportation element in an architecture dealing with the management of municipal

transportation through a city will need to deal with known resources such as roads, traffic lights

and speed limits, transportation lanes etc. based on the overall constraint that those are the ele-

ments that a municipal transportation element needs to deal with. If the logical architecture be-

comes “too fluffy” and avoids dealing with such things one can end up with a logical architecture

that is unusable since it is too far removed from something concrete. A useful metaphor when

creating a logical architecture is to consider oneself as an observer in a balloon looking down onto

the elements and determining the logical reason for their existence by observing what they can do,

taking all constraints and logical requirements into account. When designing, that viewpoint is

reversed, and the designer is situated within the elements and observing the world by looking out.

However, what this implies is that the creation of a logical architecture is a balancing act.

As an example, take the case of an electric-powered construction site [Sjoberg, et al, 2017]. The

key was a logical architecture that lived with the constraints imposed by the requirements which

can be summarized as transport crushed material from a place where it was produced by enabling

said material to be loaded and transported through the site in an efficient manner. Several known

resources constrained the architecture: the roads throughout the site, topography, weather, material

production speed, loading ability, transportation ability with the logical elements being subdivided

into loaders and transporters with the additional constraint that they be electrical and autonomous.

The logical architecture was constrained by these elements and any attempt to disregard them

would cause the logical architecture to become useless. Restrictions of the logical elements is

sometimes considered as “solutioneering” but in this case is rather the result of object-oriented

analysis and not design.

Logical architectures and their use in a SoS

The manufacturing situation described previously is essentially a system of systems. A crucial

point in a system of systems is that the elements within it have been developed with separate life

cycles, i.e., the scenario that describes the system of systems has not been considered during the

basic development of the systems that are being used within the scenario. There may be additions

that have been introduced into an otherwise known resource to enable the operations within the

scenario, but this is a small addition to an otherwise known resource. In such a system of systems

scenario all the components may essentially to some degree be known resources.

The logical model for such a system of systems can be used to analyze hazards that are the result of

failures in the logical interaction between elements that the scenario requires. An example of a

logical model of this kind is seen below. It is particularly useful for this scenario as one of the

proposed technologies is autonomous vehicles to select and deliver parts throughout the factory.

The scenario is called platooning and describes a situation where a set of trucks for a convoy with

very small distances in between the trucks to mitigate congestion and to reduce fuel consumption

(for all but the lead truck) as shown in Figure 10.

Figure 10: Truck Platooning Operational Connectivity

The above depicts the overall scenario for platooning and recognizes that the leader of the platoon

is somewhat different from the rest, something that the analysis of the model and the logical in-

teractions required to make the platoon work quickly demonstrated.

Figure 11: Truck Platooning Logical Interactions

To continue the analysis of potential hazards, the platoon leader as well as the trucks in the platoon

had to be broken down one step further into a set of logical components that by and large are

known resources with some modifications and additions based on the platoon requirements. The

breakdown of the platoon leader is shown in the Figure 10. The key addition here is the platoon

control part. A logical breakdown of the truck in platoon shows essentially the same components

with some changes to what the platoon control is responsible for implying that any truck, by

changing its behavior as far as the platoon control is concerned can act as the platoon leader. By

considering both the known components as well as any additional platooning features or functions

within the trucks and the interaction with all of the external known resources as well as internal

known resources (driver, brake, accelerator etc.) hazard scenarios can be analyzed that are the

result of the logic determined by the scenario rather than individual design. Figure 11 shows

examples of such hazards as examples of the analysis possibilities based on the logical model.The

individual hazard scenarios can be further explored by means of a sequence diagram as shown in

Figure 12

Figure 12: Truck Platooning Hazard Scenario

• If a truck somewhere in the platoon wishes to leave by exiting to a side road, the platoon

knowledge of the capabilities of the trucks within needs to be such that when the truck that

is to leave starts braking, the trucks behind can cope with this. This is essentially a platoon

information handling issue that has to do with the knowledge of the performance associ-

ated with the trucks in the platoon.

• Any change that the lead truck communicates to the members of the platoon needs to be

handled such that all trucks can react without problems.

• Several normal features within a truck that participates in a platoon needs to be disabled

such as, in most circumstances, braking and accelerating performed by the driver as well as

the individual adaptive cruise control of the trucks that participate in the platoon.

An interesting point to note here is that the hazard shown here is not the result of an error in any

equipment but rather the result of incorrect operational information in the platoon as such,

something that a logical model can detect more easily than a completed detailed resource model

where this interaction issue could easily be overlooked. Performance characteristics of the system

can be explored during simulation of the logical system to specify requirements for the physical

architecture, to further identify conformant physical systems.

Let’s Get Physical

So far, we have defined the solution elements as systems that will be further specified. Most people

think of physical architecture as things that can be touched, have geometry details, colors, mate-

rial, etc. The Actual Resources domain in the UAF define instances of elements defined in the

resource’s views and specific values of the defined attributes are defined. They are meant to rep-

resent things that exist in space and time. However, the UAF resources views do not contain

enough information to allow an engineering team to build the system. Further elaboration along

the digital engineering thread from concept to physical implementation must be performed in order

to specify the details of a system that can exist in space and time. For the next link in the digital

thread, systems engineers typically use the Systems Modeling Language (SysML) as a means of

modeling their systems. The SysML design can co-exist with the UAF package structure. Trace-

ability can be created using allocations, trace, or other SysML dependencies. Models created in

SysML include functional views such as use cases, state and activity diagram, and sequence dia-

grams. System structure is defined using block definition diagrams and internal block diagrams.

These define the various components and assembles of the system and system components. This

includes details of the different components or parts in the system, the number of each part, and

where it is included in the hierarchy. Other information modeled in value properties can include

size, weight, power, cost, etc. This provides the basis for the Bill of Materials or BOM in Product

Lifecycle Management (PLM). A BOM or product structure is a list of the raw materials,

sub-assemblies, intermediate assemblies, sub-components, parts, and the quantities of each needed

to manufacture a physical product. A BOM may be used for communication between manufac-

turing partners or confined to a single manufacturing plant. Capabilities of an integration between

MBSE and PLM have been implemented by multiple tool vendors and third party suppliers and

includes:

• Auto-generation of PLM parts from Model System Blocks

• Auto-generation of PLM Options & Variants from Model Variation Points & Variants

enabling Integrated product Line Engineering

• Bi-directional traceability to manage traceability links between PLM parts and Model

System Blocks

• Reverse engineering of SysML block structure from PLM BOMs.

This part of the digital thread increases productivity by accelerating PLM product/project start-up

using pre-populated BoMs & Options. It improves product quality by avoiding the re-entry of data

throughout the system & product lifecycle, enabling early impact analysis of system design

changes and product part changes. PLM systems can then provide manufacturing instructions and

detailed CAD drawings to machines on the shop floor that will result in the final physical system

which you can in fact touch.

Conclusion

The logical architecture is essential for concentrating on the major aspects of the system without

sliding into solutioneering or starting with too many preconceived solutions. By limiting the initial

models and analysis to the functional purpose of the model, the mind of the innovative engineer

can explore multiple means of achieving this functionality. This is especially important in complex

systems of systems as well as competitive environments where multiple solutions could exist. The

argument that “We have always done it this way” can often constrain the creative engineering

process and prevent innovation. Logical architectures can help to eliminate this mindset by starting

with a solution independent point of view before designing the physically realized system. Of

course, creating logical structures is not a skill that all possess. Much of the content in this paper

has been guided by the two authors combined 90 years of experience developing systems as well

as the sources of systems engineering best practice cited in this paper. There are engineers that see

no benefit in spending time on anything other than the eventual solution to be implemented and we

have met them. This includes hardware, software, mechanical, chemical, procedural, etc. elements

and aspects of a system. “Why are we wasting our time with requirements and analysis when we

should be writing code/ banging metal/ ordering parts/ etc.” has been the complaint of bad engi-

neers and managers for as long as we have been building systems. Physical implementation and its

resulting constraints always need to be kept in mind but limiting our thinking to existing solutions

limits us to incremental improvements rather than leaps in progress. Innovators and implementors

are both essential to the development of system. Logical architectures that never take form are of

no use to anyone. A combination of both is what is required for dreams to turn into reality and great

ideas into the systems of tomorrow and of course, things we can touch.

References

DoDAF DoD CIO, 2012, DoD Architecture Framework Version 2.02, DoD Deputy Chief

Information Officer, Available online at

http://dodcio.defense.gov/dodaf20/dodaf20_pes.aspx, accessed June, 2014.

Bruce Powel Douglass Ph.D., in Real-Time UML Workshop for Embedded Systems (Second

Edition), 2014

Hause, M. 2014. “SOS for SoS: A New Paradigm for System of Systems Modeling.” Paper

presented at the IEEE, AIAA Aerospace Conference, Big Sky, US-MT, 1-8 March.

Hause, M., F. Dandashi, 2015. “UAF for System of Systems Modeling , Systems Conference

(SysCon).” Paper Presented at the 9th Annual IEEE Systems Conference, Vancouver,

CA-BC, 13-16 April.

Hause, M., Kihlström, L., 2021, An elaboration of Services Views within the UAF, presented at

the 2021 Virtual INCOSE International Symposium.

INCOSE 2015, Systems Engineering Handbook Fourth Edition, Published by Wiley

INCOSE 2021, Systems Engineering Body of Knowledge, SEEBOK

MOD Architectural Framework, Version 1.2, 2020, Office of Public Sector Information,

https://www.gov.uk/guidance/mod-architecture-framework/

Martin, J 2020, “Enterprise Architecture Guide for the Unified Architecture Framework (UAF),”

presented at the INCOSE International Symposium.

NATO Architecture Framework Version 4, January 2018, Architecture Capability Team

Consultation, Command & Control Board

Object Management Group (OMG). 2013. OMG2013-08-04:2013. Unified Profile for

DoDAF/MODAF (UPDM) V2.1, http://www.omg.org/spec/UPDM/2.1/PDF

Object Management Group (OMG), 2019. OMG2012-06-01.OMG Systems Modeling Language

(OMG SysML™), V1.6, http://www.omg.org/spec/SysML/1.6/PDF/.

Object Management Group (OMG), 2019a, The Unified Architecture Framework, (UAF) Version

1.1, Available from https://www.omg.org/spec/UAF

Object Management Group (OMG), 2022, The Unified Architecture Framework, (UAF) version

1.2, expected date of publication, March 2022.

Stevens, Richard, et al, 1998, Systems Engineer Coping with Complexity, by Prentice Hall

Biography

Lars-Olof Kihlström. Lars-Olof Kihlström is a principal consultant at

Syntell AB where he has worked since 2013, primarily in the area of MBSE.

He has been a core member of the UAF group within the OMG since its start

as the UPDM group. He was involved in the development of NAF as well as

MODAF. He has worked with modelling in a variety of domains such as

telecommunications, automotive, defence as well as financial systems. He is

specifically interested in models that can be used to analyze the behavior of

system of systems.

Matthew Hause. Matthew Hause is a principal consultant at SSI, a member

of the UAF group, and a member of the OMG SysML specification team. He

has been developing multi-national complex systems for almost 40 years as a

systems and software engineer. He worked in the power systems industry,

command and control systems, process control, SCADA, military systems,

and many other areas. His role at SSI includes consulting, mentoring,

standards development, specification of the UAF profile and training.

https://www.omg.org/spec/UAF

